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Abstract—In this paper, we study the salient object detection problem for images. We formulate this problem as a binary labeling task

where we separate the salient object from the background. We propose a set of novel features, including multiscale contrast, center-

surround histogram, and color spatial distribution, to describe a salient object locally, regionally, and globally. A conditional random

field is learned to effectively combine these features for salient object detection. Further, we extend the proposed approach to detect a

salient object from sequential images by introducing the dynamic salient features. We collected a large image database containing tens

of thousands of carefully labeled images by multiple users and a video segment database, and conducted a set of experiments over

them to demonstrate the effectiveness of the proposed approach.

Index Terms—Salient object detection, conditional random field, visual attention, saliency map.
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1 INTRODUCTION

THE human brain and visual system pay more attention
to some parts of an image. Visual attention has been

studied by researchers in physiology, psychology, neural
systems, and computer vision for a long time. There are
many applications for visual attention, for example, auto-
matic image cropping [1], adaptive image display on small
devices [2], image/video compression, advertising design
[3], and image collection browsing [4]. Recent studies [5],
[6], [7] demonstrated that visual attention helps object
recognition, tracking, and detection as well. In this paper,
we study one aspect of visual attention—salient object
detection. Fig. 1 shows some examples of salient objects.

For instance, people are usually interested in the objects

in images in Fig. 1, and the leaf, car, and woman attract the

most visual attention in each respective image. We call them

salient objects or foreground objects that we are familiar

with, or objects with the most interest. In many applica-

tions, such as image display on small devices [2] and image

collection browsing [4], people want to show the regions
with the most interest, or the salient objects. In this paper,
we try to locate these salient objects automatically with the
supposition that a salient object exists in an image.

1.1 Related Work

Most existing visual attention approaches are based on the
bottom-up computational framework [8], [9], [10], [11], [12],
[13], [14], [15], [16], where visual attention is supposed to be
driven by low-level stimulus in the scene, such as intensity,
contrast, and motion. These approaches consist of the
following three steps: The first step is feature extraction in
which multiple low-level visual features, such as intensity,
color, orientation, texture, and motion, are extracted from the
image at multiple scales. The second step is saliency
computation. The saliency is computed by a center-surround
operation [13], self-information [8], or graph-based random
walk [9] using multiple features. After normalization and
linear/nonlinear combination, a master map [17] or a
saliency map [14] is computed to represent the saliency of
each image pixel. Last, a few key locations on the saliency
map are identified by winner-take-all, or inhibition-of-
return, or other nonlinear operations. Recently, a saliency
model based on low, middle, and high-level image features
was trained using the collected eye tracking data [18]. While
these approaches have worked well in finding a few fixation
locations in synthetic and natural images, they have not been
able to accurately detect where the salient object should be.

For instance, the middle row in Fig. 1 shows three
saliency maps computed using Itti’s algorithm [13]. Note
that the visual saliency concentrates on several small local
regions with high-contrast structures, e.g., the background
grid in Fig. 1a, the shadow in Fig. 1b, and the foreground
boundary in Fig. 1c. Although the leaf in Fig. 1a commands
much attention, the saliency for the leaf is low. Therefore,
these saliency maps computed from low-level features
don’t have the notation of objects, and they are not good
indications for where a salient object is located while
perusing these images.

Figure-ground segregation is somehow related to salient
object detection. However, the usually figure-ground
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segregation algorithm works with the supposition of the
category of objects [19], [20], [21] or with interactions [22],
[23]. If the object is assigned a given category, the specific
features, for example, for cows, can be defined specially,
and these features cannot be adopted for other categories.
For interactive figure-ground segmentation, the appearance
model is usually set up, where for our salient object
detection, we do not have such an appearance model.

Visual attention is also studied for sequential images,
where the spatiotemporal cues from image sequences are
indicated to be helpful for visual attention detection. For
instance, motion from objects or backgrounds helps to
indicate the salient fixations [24], [25], [26]. Large motion [27]
and motion contract [24] are supposed to induce prominent
attention, respectively. Usually, the visual saliency from a
single image is combined with the motion saliency for better
visual attention detection, and different combination strate-
gies are introduced in [27]. Video surprising [11] is also
related, where it describes the KullbackLeibler divergence
between the prior and posterior distribution of a feature
map. These visual attention approaches suffer from the
similar shortcoming to the visual attention approaches for
single image. Automatic object discovery [28], [29], [30] deals
with a similar salient object detection task for sequential
images. The objects are extracted and tracked using motion-
based layer segmentation in [28] and a generative model of
objects by defining switch variables for combinatorial model
selection is adopted in [29]. The unsupervised video object
discovery [30] combines the topic model and the temporal
model for videos.

1.2 Our Approach

In this paper, we investigate one aspect of visual attention,
namely, salient object detection. We incorporate the high-
level concept of the salient object into the process of saliency
map computation. As can be observed in Fig. 2, people
naturally pay more attention to salient objects in images,
such as a person, a face, a car, an animal, or a road sign.
Therefore, we formulate salient object detection as a binary
labeling problem that separates a salient object from the

background. Like face detection, we learn to detect a
familiar object; unlike face detection, we detect a familiar
yet unknown object in an image.

We present a supervised approach to learn to detect a
salient object in an image or sequential images. First, we
model the salient object detection problem by a condition
random field (CRF), where a group of salient features are
combined through CRF learning. Moreover, the segmenta-
tion is also incorporated into the CRF to detect a salient object
with unknown size and shape. The last row in Fig. 1 shows
the saliency maps computed by our approach. Second, to
overcome the challenge that we do not know what a specific
object or object category is, we propose a set of novel local,
regional, and global salient features to define a generic
salient object. We also define the salient features on the
motion field similarly to capture the spatiotemporal cues.
Then, we construct a large image database with 20,000+ well-
labeled images for training and evaluation. To the best of our
knowledge, it is the first time a large image database has been
made available for quantitative evaluation.

The remainder of the paper is organized as follows:
Section 2 introduces the formulation of the salient object
detection problem, and the salient object features are
presented in Section 3. Section 4 introduces the image
database and the evaluation experiments. Section 5 dis-
cusses the connections between our approach and related
approaches, and the conclusion follows in Section 6.

2 FORMULATION

Given an image I, we represent the salient object as a binary

mask A ¼ faxg. For each pixel x, ax 2 f1; 0g is a binary label

to indicate whether the pixel x belongs to the salient object.

Similarly, the salient objects in sequential images,
fI1; . . . ; It; . . . ; INg, are represented by a sequence of binary

masks fA1; . . . ; At; . . . ; ANg, with At corresponding to

image It.
In this paper, we formulate the salient object detection

problem as a binary labeling task by inspecting whether

each pixel belongs to the salient object. We first present the

conditional random field formulation to the single-image
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Fig. 2. Sample images in our image database for salient object
detection.

Fig. 1. Salient object detection. From top to bottom: input image with a
salient object, saliency map computed by Itti’s attention algorithm (http://
www.saliencytoolbox.net), and saliency map computed by our salient
object detection approach.



case, and then extend it to the sequential image case by
exploring the extra temporal information.

2.1 Formulation of Salient Object Detection in a
Single Image

In the CRF framework [31], the probability of a labeling
configuration A ¼ faxg, given the observation image I,
is modeled as a conditional distribution P ðAjIÞ ¼
1
Z expð�EðAjIÞÞ, where Z is the partition function. We
define the energy EðAjIÞ as a linear combination of a set
of static salient features, including a number of K unary
features Fkðax; IÞ and a pairwise feature Sðax; ax0 ; IÞ:

EðAjIÞ ¼
X
x

XK
k¼1

�kFkðax; IÞ þ
X
x;x0

Sðax; ax0 ; IÞ; ð1Þ

where �k is the weight of the kth feature and x; x0 are two
adjacent pixels. Compared with Markov random field, one
of the advantages of CRF is that the features Fkðax; IÞ and
Sðax; ax0 ; IÞ can be arbitrary low-level or high-level features
extracted from the whole image. CRF also provides an
elegant framework to learn an optimal combination of
multiple features.

Salient object feature.Fkðax; IÞ indicates whether a pixelx
belongs to the salient object. In the next section, we
propose a set of local, regional, and global salient object
features. The salient object feature Fkðax; IÞ is formulated
from a normalized feature map fkðx; IÞ 2 ½0; 1� for every
pixel, and is written as follows:

Fkðax; IÞ ¼
fkðx; IÞ; ax ¼ 0;
1� fkðx; IÞ; ax ¼ 1:

�
ð2Þ

Pairwise feature. Sðax; ax0 ; IÞ exploits the spatial rela-
tionship between two adjacent pixels. Following the
contrast-sensitive potential function in interactive image
segmentation [22], we define Sðax; ax0 ; IÞ as

Sðax; ax0 ; IÞ ¼ jax � ax0 j � expð��dx;x0 Þ; ð3Þ

where dx;x0 ¼ kIx � Ix0 k2 is the L2-norm of the color differ-
ence, � is a robust parameter that weights the color contrast
and can be set as � ¼ ð2hkIx � Ix0 k2iÞ�1 [32], with h�i being the
expectation operator. This feature function can be viewed as
a penalty term when adjacent pixels are assigned with
different labels. The more similar the colors of the two pixels
are, the less likely it is that they are assigned different labels.

2.2 Formulation of Salient Object Detection in
Sequential Images

We exploit the extra temporal cues to formulate salient object
detection in sequential images. Besides the static salient
features from a single image, the temporal features, called
dynamic features, are further defined. Differently from
previous work [24], [25], [26], we propose new dynamic
features and learn a CRF model to combine the dynamic
features and static features. Instead of building a complex 3D
graph formulation, e.g., a large graph in interactive video
cutout [33], [34], we integrate the cues from multiple images
into a 2D graph for effective and efficient optimization.

Given the sequential images fItg, t 2 f1; . . . ; Ng, the
probability of the sequential binary maps, fAtg,
t 2 f1; . . . ; Ng, can be modeled as a conditional distribution:

P ðA1;...;N jI1;...;NÞ ¼
1

Z
expð�EðA1;...;N jI1;...;NÞÞ; ð4Þ

where Z is the partition function. A reasonable supposition
is that the salient object detection At can be inferred from
the associated frame It and the previous frame It�1. Then,
the energy function EðA1;...;N jI1;...;NÞ can be decomposed as

EðA1;...;N jI1;...;NÞ ¼
XN
t¼1

EðAtjI1;...;NÞ ¼
XN
t¼1

EðAtjIt�1; ItÞ: ð5Þ

Here, EðAtjIt�1; ItÞ is composed of a static term and a
dynamic term. The static term is the same as the single-
image case. In the dynamic term, we compute a motion
field Mt from a pair of successive images It�1 and It, and
build salient features from the motion field, and in addition,
introduce an appearance coherent feature between the
salient objects in the successive frames. Specifically, the
energy EðAtjIt�1; ItÞ is formulated as a linear combination
of static salient features Fkðax; ItÞ, a pairwise feature
Sðax; ax0 ; IÞ, and a set of dynamic salient features, including
motion salient features Fkðax;MtÞ and appearance coherent
features Fkðax; It�1; ItÞ:

EðAtjIt�1; ItÞ ¼
X
x

 XK
k¼1

�kFkðax; ItÞ þ
XKþL

k¼Kþ1

�kFkðax;MtÞ

þ �0F ðax; It�1; ItÞ
!
þ
X
x;x0

Sðax; ax0 ; ItÞ;

ð6Þ

where f�kg are the weights of the features, Mt is the motion
field corresponding to image It, and x; x0 are two adjacent
pixels in image It. Fkðax; ItÞ are the static salient features, and
Sðax; ax0 ; ItÞ describes the spatial relationship between two
adjacent pixels. These two categories of features are defined
as in (1). Differently from (1), more features from the temporal
information are included. These are the motion salient
features Fkðax;MtÞ from the motion field Mt and the
appearance coherent feature F ðax; It�1; ItÞ between the
salient objects from two adjacent frames.

Motion salient feature. Fkðax;MtÞ is defined, similarly to
(2), as the indicator of a normalized feature map
fkðx;MtÞ 2 ½0; 1�, where Mt is the motion field of the
image It and obtained based on the SIFT flow technique [35].

Appearance coherent feature. F ðax; It�1; ItÞ models the
appearance coherence of the salient objects from two
adjacent frames, which is defined as an indicator of a
normalized feature map fðx; It�1; ItÞ 2 ½0; 1�, similarly to (2).
This feature function fðx; It�1; ItÞ penalizes the pixels that
are identified to be in the salient object, but with a large
color difference between the surrounding regions from two
adjacent frames. With this appearance coherent feature, the
salient objects from two adjacent frames can be labeled
more consistently.

2.3 Learning and Inference for The CRF Model

The objective functions of the salient object detection for
single-image and sequential-image cases in (1) and (6) are
essentially very similar to the perspective of the CRF
formulation, i.e., a linear combination of a set of features. To
get the linear combination of features, the goal of CRF
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learning is to estimate the linear weights �
!¼ f�kg under

the Maximized Likelihood (ML) criteria. In the following,
we present the parameter learning scheme for the single-
image case. The parameter learning scheme for the
sequential image case can be similarly obtained. Given
N training image pairs fIn; AngNn¼1, the optimal parameters
maximize the sum of the log-likelihood:

��
�! ¼ arg max

�
!

X
n

logP ðAnjIn; �
!Þ: ð7Þ

The derivative of the log-likelihood with respect to the
parameter �k is the difference between two expectations:

d logP ðAnjIn; �
!Þ

d�k

¼< FkðAn; InÞ >
P ðAn jIn; �

!
Þ
� < FkðAn; InÞ >P ðAnjGnÞ :

ð8Þ

Then, the gradient descent direction is

��k /
X
n

�X
x;anx

�
Fk
�
anx; I

n
�
p
�
anxjIn; �

!�
� Fk

�
anx; I

n
�
p
�
anxjgnx

���
;

ð9Þ

where pðanxjIn; �
!Þ ¼

R
Annanx

P ðAn
xjIn; �

!Þ is the marginal dis-

tribution and pðanxjgnxÞ is from the labeled ground truth gnx and

is defined as

p
�
anxjgnx

�
¼ 1� gnx; ax ¼ 0;

gnx; ax ¼ 1:

�
ð10Þ

Exact computation of marginal distribution pðanxjIn; �
!Þ is

intractable. However, the pseudomarginal (belief) com-

puted by belief propagation can be used as a good

approximation [36], [19]. The tree-reweighted belief propa-

gation [37] can be run under the current parameters in each

step of gradient descent to compute an approximation of

the marginal distribution pðanxjIn; �
!Þ.

When the combination parameters of salient features are
learned, we can infer the most probable labeling A to
minimize the energy from (1) and (6). We still apply the
tree-reweighted belief propagation to infer the label using
the learned parameters, and we will discuss the details of
implementations in Section 4.

3 SALIENT OBJECT FEATURE

In this section, we instantiate the formulation of salient
object detection by presenting the salient object features:
static salient features for the single-image case and dynamic
salient features specifically for the sequential images.

3.1 Static Salient Feature

We introduce local, regional, and global features that define a
salient object. Since the scale selection is one of the
fundamental issues in feature extraction, we resize all images
so that the max(width, height) of the image is 400 pixels. In
the following, all parameters are set with respect to this basic
image size.

3.1.1 Multiscale Contrast

Contrast is the most commonly used local feature for
attention detection [13], [38], [39] because the contrast
operator simulates the human visual receptive fields. With-
out knowing the size of the salient object, contrast is usually
computed at multiple scales. In this paper, we simply define
the multiscale contrast feature fcðx; IÞ as a linear combina-
tion of contrasts in the Gaussian image pyramid:

fcðx; IÞ ¼
XL
l¼1

X
x02NðxÞ

kIlðxÞ � Ilðx0Þk2; ð11Þ

where Il is the lth-level image in the pyramid and the
number of pyramid levels L is 6. NðxÞ is a 9� 9 window.
The feature map fcð�; IÞ is normalized to a fixed range ½0; 1�.
An example is shown in Fig. 3. Multiscale contrast
highlights the high-contrast boundaries by giving low
scores to the homogenous regions inside the salient object.

3.1.2 Center-Surround Histogram

As shown in Fig. 2, the salient object usually has a larger
extent than local contrast and can be distinguished from its
surrounding context. Therefore, we propose a regional
salient feature.

Suppose the salient object is enclosed by a rectangle R.

We construct a surrounding contour RS with the same area

ofR, as shown in Fig. 4a. To measure how distinct the salient

object in the rectangle is with respect to its surroundings, we

can measure the distance between R and RS using various

visual cues such as intensity, color, and texture/texton. In

this paper, we use the �2 distance between histograms of

RGB color: �2ðR;RSÞ ¼ 1
2

P ðRi�Ri
S
Þ2

RiþRi
S

. We use histograms

because they are a robust global description of appearance.

They are insensitive to small changes in size, shape, and

viewpoint. Another reason is that the histogram of a

rectangle with any location and size can be very quickly

computed by means of an integral histogram introduced

recently [40]. Fig. 4a shows that the salient object (the girl) is

most distinct using the �2 histogram distance. We have also

tried the intensity histograms and histograms of oriented

gradient [41]. We found that the former is redundant with

the color histogram and the latter is not a good measurement

because the texture distribution in a semantic object is

usually not coherent.
To handle varying aspect ratios of the object, we use five

templates with different aspect ratios f0:5; 0:75; 1:0, 1:5; 2:0g.
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Fig. 3. Multiscale contrast. From left to right: input image, contrast maps
at multiple scales, and the feature map from linearly combining the
contrasts at multiple scales.



We find the most distinct rectangle, R�ðxÞ, centered at each

pixel x by varying the size and aspect ratio:

R�ðxÞ ¼ arg max
RðxÞ

�2ðRðxÞ; RSðxÞÞ: ð12Þ

The size range of the rectangle RðxÞ is set to ½0:1; 0:7� �
minðw; hÞ, where w; h are the image width and height. Then,

the center-surround histogram feature fhðx; IÞ is defined as

a sum of spatially weighted distances:

fhðx; IÞ /
X

fx0 jx2R�ðx0Þg
wxx0�

2ðR�ðx0Þ; R�Sðx0ÞÞ; ð13Þ

where R�ðx0Þ is the rectangle centered at x0 and containing

the pixel x. The weight wxx0 ¼ expð�0:5��2
x0 kx� x0k

2Þ is a

Gaussian falloff weight with variance �2
x0 , which is set to

one-third of the size of R�ðx0Þ. Finally, the feature map

fhð�; IÞ is also normalized to the range ½0; 1�.
Fig. 4b shows several center-surround feature maps.

The salient objects are well located by the center-surround

histogram feature. The last image in Fig. 4b is an especially

difficult case for color or contrast-based approaches but the

center-surround histogram feature can capture the “object-

level” salient region.
To further verify the effectiveness of this feature, we

compare the center-surround histogram distance of a

randomly selected rectangle, a rectangle centered at the

image center, and three user-labeled rectangles in the

image. Fig. 5 shows the average distances on the image

set A, and this image set is introduced in Section 4. It is no

surprise that the salient object has a large center-surround

histogram distance.

3.1.3 Color Spatial Distribution

The center-surround histogram is a regional feature. Is there

a global feature related to the salient object? We observe

from Fig. 2 that the more widely a color is distributed in the

image, the less possible it is that a salient object contains this

color. The global spatial distribution of a specific color can

be used to describe the saliency of an object.
To describe the spatial distribution of a specific color, the

simplest approach is to compute the spatial variance of the

color. First, all colors in the image are represented by

Gaussian Mixture Models (GMMs) fwc; �c;�cgCc¼1, where

fwc; �c;�cg is the weight, the mean color, and the covar-

iance matrix of the cth component. Each pixel is assigned to

a color component with the probability:

pðcjIxÞ ¼
wcNðIxj�c;�cÞP
c wcNðIxj�c;�cÞ

: ð14Þ

Then, the horizontal variance VhðcÞ of the spatial position

for each color component c is

VhðcÞ ¼
1

jXjc

X
x

pðcjIxÞ � jxh �MhðcÞj2; ð15Þ

MhðcÞ ¼
1

jXjc

X
x

pðcjIxÞ � xh; ð16Þ

where xh is the x-coordinate of the pixel x and

jXjc ¼
P

x pðcjIxÞ. The vertical variance VvðcÞ is similarly

defined. The spatial variance of a component c is

V ðcÞ ¼ VhðcÞ þ VvðcÞ. We normalized fV ðcÞgc to the range

½0; 1� ( V ðcÞ  ðV ðcÞ �mincV ðcÞÞ=ðmaxcV ðcÞ �mincV ðcÞÞ) .

Finally, the color spatial-distribution feature fsðx; IÞ is

defined as a weighted sum:

fsðx; IÞ /
X
c

pðcjIxÞ � ð1� V ðcÞÞ: ð17Þ

The feature map fsð�; IÞ is also normalized to the range ½0; 1�.
Fig. 6b shows color spatial-distribution feature maps of
several example images. The salient objects are well covered
by this global feature. Note that the spatial variance of the
color at the image corners or boundaries may also be small
because the image is cropped from the whole scene. To
reduce this artifact, a center-weighted, spatial-variance
feature is defined as
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Fig. 5. The average center-surround histogram distance on the image
set A. 1. A randomly selected rectangle. 2. A rectangle centered at the
image center with 55 percent ratio of area to image. 3-5. Rectangles
labeled by three users.

Fig. 4. Center-surround histogram. (a) Center-surround histogram
distances with different locations and sizes. (b) Top row are input
images and bottom row are center-surround histogram feature maps.



fsðx; IÞ /
X
c

pðcjIxÞ � ð1� V ðcÞÞ � ð1�DðcÞÞ; ð18Þ

where DðcÞ ¼
P

x pðcjIxÞdx is the weight which assigns
less importance to colors nearby image boundaries and is
also normalized to ½0; 1�, similarly to V ðcÞ. dx is the
distance from pixel x to the image center. As shown in
Fig. 6c, center-weighted, color spatial variance shows a
better prediction of the saliency of each color.

To verify the effectiveness of this global feature, we plot
the color spatial variance versus average saliency prob-
ability curve on the image set A, as shown in Fig. 7.
Obviously, the smaller a color variance is, the higher the
probability the color belongs to the salient object is.

3.2 Dynamic Salient Feature

3.2.1 Motion Salient Features

The motion field and the features derived from it are useful
to induce visual attention. For example, large motion and
motion contract are supposed to induce visual attention in
[27], [24], and a constant velocity motion model is assumed
for the salient object in [30]. Motion magnitude is a possible
cue, but may not be sufficient. For example, in Fig. 8a, the
region with larger motion magnitude includes the salient
object. In contrast, the region with smaller motion magni-
tude includes the salient object in Fig. 8b. In this paper, we
view the motion field as an image and define the local,
regional, and global salient features from it.

We compute the motion field M using the SIFT flow [35].
It can be observed that the motion fields have some special
properties for the salient feature computation. For example,
the motion fields from the salient object tend to be
consistent because the regions from the salient object are
inclined to have a similar motion, and the motion fields in
the regions of object boundaries are usually disordered. To
measure this consistency, motion variance V ðx;MÞ in a
small rectangle surrounding x is computed, and a weight is
assigned to each pixel as follows:

Wðx;MÞ ¼ expð��ckV ðx;MÞk2Þ; ð19Þ

where V ðx;MÞ is computed on a 2D motion vector from a
window (5� 5 in this paper) centered at x and �c ¼ 0:2. As
in the first row of Fig. 9, the motion from the surrounding
region of pixel x is more cluttered and the weight of pixel x
is smaller.

Compared with the salient features defined for a single
image, all the local, regional, and global salient features are
defined similarly on weighted 2D motion vectors, including
the motion magnitude and the motion direction. In the
following, we present the formulation and only highlight
the difference from the image:

Multiscale contrast of weighted motion field. It is
defined on weighted motion vectors as follows:

fMcðx;MÞ ¼
XL
l¼1

X
x02NðxÞ

Wl
xW

l
x0 kMlðxÞ �Mlðx0Þk2; ð20Þ

where Ml is the lth-level motion in the pyramid and Wl
x is

the weight at pixel x. We also test the multiscale contrast on
motion magnitude or motion direction. They do not
outperform the feature on the 2D motion vector because
neighborhood pixels may have the same motion magnitude
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Fig. 6. Color spatial-distribution feature. (a) Input images. (b) Color
spatial variance feature maps. (c) Center-weighted, color spatial
variance feature maps.

Fig. 7. Color spatial variance (x-coordinate) versus average saliency
probability (y-coordinate) on the image set A. The saliency probability is
computed from the “ground truth” labeling.

Fig. 8. Motion map. (a) The salient object with a large motion. (b) The
background with a large motion.

Fig. 9. Motion salient features. From left to right: (a) Two adjacent
images, the motion field, and the motion weight map; (b) the local,
regional, global, and combined motion salient features.



but different directions, and the salient feature from
orientation does not perform well, especially when the
motion magnitude is small.

Center-surround histogram of weighted motion field. It
captures the statistic difference of motion field in a regional
extension. We compute the histogram of motion vectors
where horizontal and vertical motion are both normalized
and used. The regional salient feature is defined as

fMhðx;MÞ /
X

fx0 jx2R�
M
ðx0Þg

wxx0Wx0�
2
�
R�Mðx0Þ; RM

�
Sðx0Þ

�
; ð21Þ

where R�M has the largest center-surround histogram
distance on motion vectors, wxx0 is the weight for the spatial
distance, and Wx0 is the weight of pixel x0.

Spatial distribution of weighted motion field. It
captures the global distribution of the motion field in an
image. There are usually several different prominent
motions in one frame, such as the motions from the
background, object, or disturbs. Similarly to the spatial
distribution of color, the wider a motion is distributed in the
image, the less possible it is that a salient object corresponds
to this motion. To get the spatial distribution, these motion
vectors in which each vector is weighted by Wx are first
clustered into several GMMs. The spatial variance VMðmÞ of
each Gaussian component m is computed similar to the
static feature, and the final spatial distribution feature is
defined as

fMsðx;MÞ /
X
m

WxpðmjMxÞ � ð1� VMðmÞÞ: ð22Þ

Usually, there are fewer components for motion than for
color because there are not many independent moving
regions in one image. We use 3-5 motion components in
this paper.

3.2.2 Appearance Coherent Feature

It is observed that salient objects from two consecutive
frames probably have similar appearance features. The
observation is verified on our labeled image pairs. We
first compute the color histogram RtðxÞ in the labeled
rectangle on the current image It, and the bth bin of RtðxÞ
is computed as: RtðxÞb ¼

P
x02Rt

fðx0; ItÞ�ðIx0 ¼ bÞ, where
fðx0; ItÞ is set to 1 if x0 is in the labeled rectangle and 0
otherwise. Second, we randomly select one rectangle with
the same size in the previous image It�1 and compute the
color histogram of Rt�1ðx0Þ similarly. Third, we compute the
saliency ratio V1 and the �2 distance between the color
histograms RtðxÞ and Rt�1ðx0Þ as two variables:

V1 ¼
P

x0 fðx0; IÞ�ðx0 2 RtÞP
x0 �ðx0 2 RtÞ

�
P

x0 fðx0; It�1Þ�ðx0 2 Rt�1ÞP
x0 �ðx0 2 Rt�1Þ

;

V2 ¼ �2ðRtðxÞ; Rt�1ðx0ÞÞ; ð23Þ

where fðx; IÞ and fðx0; It�1Þ come from the labeled ground
truths. We then create a statistic of the relationship between
the two variables V1 and V2, as shown in Fig. 10.

To integrate the appearance coherence into the energy
defined on a 2D graph, we try to penalize the pixels that are
identified to be in the salient object by static salient features
but with a big color histogram difference. First, we compute
the weighted color histogram RtðxÞ from an N �N patch
surrounding pixel x, and the bth bin of the color histogram
RtðxÞ is computed as: RtðxÞb ¼

P
x02Rt

fðx0; IÞ�ðIx0 ¼ bÞ,
where fðx0; IÞ is the static salient feature defined on a
single image. Second, we search the patch Rt�1ðx�Þ in image
It�1 to satisfy: x� ¼ arg maxx0 �2ðRtðxÞ; Rt�1ðx0ÞÞ, where x0 2
NðxÞ and NðxÞ are the set of the neighboring pixels of x,
and Rt�1ðx0Þ is computed similar to RtðxÞ. Finally, the
appearance coherent feature is computed as

fðx; It; It�1Þ

/ fðx; ItÞ þ fðx
�; It�1Þ

2
expð��2ðRtðxÞ; Rt�1ðx�ÞÞÞ;

ð24Þ

where fðx; ItÞ and fðx�; It�1Þ are the static salient features
from It and It�1. Fig. 11 gives an example of the appearance
coherent feature.

4 EVALUATION

4.1 Data Set

4.1.1 Image Data Set

We have collected a very large image database with 130,099
high-quality images from a variety of sources, mostly from
image forums and image search engines. Then, we
manually selected 60;000þ images, each of which contains
a salient object or a distinctive foreground object. To test the
performance, we further selected 20,840 images that contain
a clear, unambiguous object of interest, which is helpful for
building the ground truth. In the selection process, we
excluded any image containing a very large salient object so
that the performance of detection can be more accurately
evaluated.

Fig. 2 gives some example images, and each image
contains an unambiguous salient object. These salient
objects differ in category, color, shape, size, etc. In other
words, there is no more prior knowledge or constraint on
these objects except that they are the most salient. This
image database is different from the UIUC Cars data set, or
the PASCAL VOC 2006 data set, where images containing a

LIU ET AL.: LEARNING TO DETECT A SALIENT OBJECT 359

Fig. 10. Histogram distance of appearance features (x-coordinate)
versus average saliency ratio (y-coordinate).

Fig. 11. Appearance coherent feature. (a) and (c) are an image pair,
(b) and (d) are the corresponding static salient features, and (e) is the
appearance coherent feature.



specific category of objects are collected together. As
clarified in the above section, we do not judge whether an
object exists or discriminates from multiple objects. Speci-
fically, we aim to locate the salient object, with the
assumption that one salient object exists in the given image.

4.1.2 Sequential Image Data Set

We collected a video database with 2;000þ video segments
from a variety of sources, e.g., video sharing Web sites.
Further, we selected 100 video segments that include salient
object sequences, such as racing car, long jump, kids
sequences, and so on. Example images from these video
segments are shown in Fig. 14. Each video segment contains
about 100-500 frames with the same salient objects. We also
label the ground truth by hand for parameter learning and
result evaluation, and 30;000þ image pairs are collected for
labeling. One trait of these image pairs is that the image
quality is not as good as the image quality from the above
image data set because all images are taken from video
segments on Web sites. Another trait is that the salient
objects are much smaller and the average of the ratios
between the sizes of salient objects and images is about 0.1,
which results in the salient object detection tasks in those
video segments being very challenging.

4.2 Ground Truth Construction

For labeling the ground truth, we ask the user to draw a
bounding rectangle to specify a salient object. Our detection
algorithm also outputs a rectangle around the salient object.
As addressed in [43], one advantage is that it is much easier
to provide ground truth annotation for bounding boxes
than, e.g., for pixelwise segmentations. At the same time, the
rectangle representation of the salient object satisfies many
applications, such as adaptive image display on small
devices and image collage. We still represent the salient
object piecewise as At in the problem formulation, and we
will transform the final binary result to a bounding rectangle
for further evaluation and applications where this strategy
can avoid cutting off the spindly edge of the salient object.

4.2.1 Labeling Consistency in Image Data Set

People may have different ideas about what a salient object
in an image is. To address the problem of “what is the most
likely salient object in a given image,” we take a voting
strategy by labeling a “ground truth” salient object in the

image by multiple users. In this paper, we focus on the case
of a single salient object in an image. For each image to be
labeled, we ask the user to draw a rectangle that encloses
the most salient object in the image according to his/her
own understanding. The rectangles labeled by different
users usually are not the same. To reduce the labeling
inconsistency, we vote a “ground truth” labeling from the
rectangles drawn by multiple users.

In the first stage, we asked three users to label all
20,840 images individually. On average, each user took 10-
20 seconds to draw a rectangle on an image. The whole
process took about three weeks. Then, for each labeled
image, we compute a saliency probability map G ¼
fgxjgx 2 ½0; 1�g of the salient object using the three user
labeled rectangles:

gx ¼
1

M

XM
m¼1

amx ; ð25Þ

where M is the number of users and Am ¼ famx g is the
binary mask labeled by the mth user. Fig. 12 shows two
highly consistent examples and three inconsistent exam-
ples. The inconsistent labeling is due to multiple disjointed
foreground objects for the first two examples at the bottom
row. The last example in the bottom row shows that an
object has hierarchical parts that are of interest. We call this
image set A. In this paper, we focus on consistent labeling
of a single salient object for each image.

To measure the labeling consistency, we compute

statistics Ct for each image:

Ct ¼
P

x2fgx>tg gxP
x gx

; ð26Þ

where Ct is the percentage of pixels whose saliency

probabilities are above a given threshold t. For example,

C0:5 is the percentage of the pixels agreed on by at least half

of the users. C0:9 � 1 means that the image is consistently

labeled by all the users. Figs. 13a and 13b show the

histograms of C0:9 and C0:5 on the image set A. As can be

seen, the labeled results are quite consistent, e.g., 92 percent

of the labeling results are consistent between at least two
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Fig. 12. Labeled images from three users. Top: two consistent labeling
examples. Bottom: three inconsistent labeling examples.

Fig. 13. Labeling consistency for image data set. (a) and (b) C0:9 (agreed
upon by all three users) and C0:5 on image set A. (c) and (d) C0:9 (agreed
upon by at least eight of nine users) and C0:5 on image set B.



users (Fig. 13b) and 63 percent of the labeling results are

highly consistent among all three users (Fig. 13a).
In the second stage, we randomly selected 5,000 highly

consistent images (i.e., C0:9 > 0:8) from the image set A.
Then, we asked nine different users to label the salient
object rectangle. Figs. 13c and 13d show the histograms of
C0:9 and C0:5 on these images. Compared with the image set
A, this set of images has less ambiguity of what the salient
object is. We call these images as image set B.

After the above two-stage labeling process, the salient
object in our image database is defined based on the
“majority agreement” of multiple users and represented as
a saliency probability map. The whole labeled image
database is publicly available.1

4.2.2 Labeling Continuity in Sequential Image Data Set

For image pairs from video segments, people may have less

disputation about what the salient object is because the

motion helps to address the salient object. We ask only one

user to label these sequential images, and it takes about two

weeks to label all image pairs. In most cases, the movement

of the salient object is smooth, which means that the labeled

rectangles from two adjacent frames are also continuous. To

describe the labeling continuity, we compute the statistic

C ¼ Region areaðRt�1\RtÞ
Region areaðRt�1[RtÞ , where Rt�1 and Rt are two labeled

rectangles for two adjacent frames. Fig. 15a shows the

histogram about C on these image pairs. We also get

statistics on the maximal boundary distance to describe the

labeling continuity for sequential images, and the histogram

is shown in Fig. 15b. We find that the maximal boundary

distance is less than 10 pixels for 95 percent of image pairs,

and this is also used as a reference when we define the

appearance coherent features.

4.3 Evaluation Criteria

With the labeled probability map G, for any detected salient
object mask A, we define region-based and boundary-based
measurements. We use the precision, recall, and F-measure
for region-based measurement. Precision/Recall is the ratio

of a correctly detected salient region to the detected/
“ground truth” salient region:

Precision ¼
X
x

gxax

�X
x

ax; Recall ¼
X
x

gxax

�X
x

gx:

ð27Þ

The F-measure is the weighted harmonic mean of precision
and recall, with a nonnegative 	:

F	 ¼
ð1þ 	Þ � Precision�Recall
	� PrecisionþRecall : ð28Þ

We set 	 ¼ 0:5 following [44]. The F-measure is an overall
performance measurement.

For the boundary-based measurement, we use boundary
displacement error (BDE) [45], which measures the average
displacement error of the corresponding boundaries of two
rectangles. The displacement is averaged over the different
users.

4.4 Implementation of CRF Learning and Inference

For the image data set, we randomly select 2,000 images
from image set A and 1,000 images from image set B to
construct a training set, which are excluded from the testing
phase. For sequential image data set, we randomly select
20 video segments with 5;000þ image pairs to construct a
training set, and use others for testing. We do many
different splits in terms of a training/test data set, and find
that the different splits almost do not affect the evaluation
results. The key factor is the amount of training data, and
the parameter learning algorithm can converge well when
the amount of training data is more than 2,000.

Because the ground truth of salient objects is labeled by
rectangles, this strategy lacks the precise alignment between
object boundaries and labeled rectangles. Instead of learn-
ing the parameter of the pairwise feature [46], we normalize
the sum of �k by experience, e.g.,

P
k �k ¼ 1. Furthermore,

we observe that the pixels from the boundaries of labeled
rectangles are less believable because the surrounding
rectangle may label some pixels near the boundaries as
the salient object by mistake. To reduce this effect, we use a
Gaussian function to give the weight of pixels when we
compute ��k in (9). This strategy helps to speed up the
convergence of the learning algorithm.

We use the tree-reweighted belief propagation to infer
the labeling because it is used for CRF learning. We find
that there are small differences between the learned
parameters if we use different algorithms to compute the
marginal distribution pðanxjIn; �

!Þ. To output a rectangle for
the evaluation, we exhaustively search for a smallest
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Fig. 14. Sample images from experimental video segments and our
detection results on these images.

1. http://research.microsoft.com/jiansun/SalientObject/salient_object.
htm.

Fig. 15. Labeling continuity for the video data set. (a) The histogram of
C. (b) The histogram of maximal boundary distance. Both are on two
adjacent labeled rectangles Rt�1 and Rt.



rectangle containing at least 95 percent salient pixels in the

binary label map produced by the CRF model.

4.5 Salient Object Detection from a Single Image

4.5.1 Effectiveness of Features and CRF Learning

To evaluate the effectiveness of each salient object feature,

we trained four CRFs: three CRFs with individual features

and one CRF with all three features. Fig. 16 shows the

precision, recall, and F-measure of these CRFs on the image

sets A and B. As can be seen, the multiscale contrast feature

has high precision but very low recall. The reason is that the

inner homogenous region of a salient object has low

contrast. The center-surround histogram has the best

overall performance (on F-measure) among all individual

features. This regional feature is able to detect the whole

salient object, although the background region may contain

some errors. The color spatial distribution has slightly lower

precision but has the highest recall. Later, we will discuss

that for attention detection, recall rate is not as important as

precision. It demonstrates the strength and weakness of the

global feature. After CRF learning, the CRF with all three

features produces the best result, as shown in the last bars

in Fig. 16. The best linear weights we learned are:

�
!¼ f0:24; 0:54; 0:22g.

Fig. 17 shows the feature maps and labeling results of

several examples. Each feature has its own strengths and

limitations. By combining all features with the pairwise

feature, the CRF successfully locates the most salient object.

4.5.2 Comparison with Other Approaches

We compare our algorithm with two leading approaches.
One is the contrast and fuzzy growing-based method [39],
which we call “FG.” This approach directly outputs a
rectangle. Another approach is based on the salient model
presented in [13] (we use a matlab implementation from
http://www.saliencytoolbox.net), and we call it “SM.”
Because the output of Itti’s salient model is a saliency map,
we convert the saliency map to a rectangle containing
95 percent of the fixation points, which are determined by
the winner-take-all algorithm [13]. We also resolve the
rectangles directly through complete searching by maximiz-
ing

P
x2Rð1� F ðxÞÞ þ

P
x 62R F ðxÞ, where R is the resolve

rectangle and F ðxÞ 2 ½0; 1� is the normalized saliency map.
This method can be applied on our saliency map and Itti’s
saliency map, but the results do not outperform the
corresponding results using the current method.

Fig. 18 shows the evaluation results of three algorithms
on both image sets A and B. On image set A, our approach
reduces by 42 and 34 percent the overall error rates on
F-measure, and 39 and 31 percent BDEs, compared with FG
and SM. Similarly, 49 and 38 percent overall error rates on
F-measure and 48 and 37 percent BDEs are reduced on the
image set B.

Note that as shown in Figs. 16 and 18, the individual
features (center-surround histogram and color spatial dis-
tribution), FG, and SM all have higher recall rates than our
final approach. In fact, recall rate is not a very useful measure
in attention detection. For example, a 100 percent recall rate
can be achieved by simply selecting the whole image. So, an
algorithm trying to achieve a high recall rate tends to select
as large an salient region as possible, sacrificing the precision
rate. The key objective of salient object detection should be to
locate the position of a salient object as accurately as possible,
i.e., with high precision. However, for images with a large
salient object, high precision is also not too difficult to
achieve. Again, for example, for an image with a salient
object occupying 80 percent of the image area, just selecting
the whole image as the salient area will give 80 percent
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Fig. 16. Evaluation of salient object features. 1. Multiscale contrast.
2. Center-surround histogram. 3. Color spatial distribution. 4. Combina-
tion of all features. (a) Image set A. (b) Image set B.

Fig. 17. Examples of salient features. From left to right: input image,
multiscale contrast, center-surround histogram, color spatial distribution,
and binary salient mask by CRF.

Fig. 18. Comparison of different algorithms. Region-based (precision,
recall, and F-measure) and boundary-based (BDE) evaluations. 1. FG.
2. SM. 3. Our approach. (a) Precision/recall, image set A. (b) Precision/
recall, image set B. (c) BDE, image set A. (d) BDE, image set B.



precision with 100 percent recall rate. So, the real challenge

for salient object detection is to achieve high precision on

small salient objects. To construct such a challenging data

set, we select a small object subset with object/image ratio in

the range ½0; 0:25� from the image set A. The results on this

small object data set are shown in Fig. 19, where we also

show the performance of a rectangle fixed at the image center

with 0.6 object/image ratio. Note that both this center

rectangle and FG achieve high recall rate but with very low

precision and large BDE. Our method is significantly better

than FG and SM in both precision (97 and 37 percent

improvement) and BDE (55 and 33 percent reduction).

Fig. 20 shows several examples with ground truth rectangles

from one user for a qualitative comparison. We can see that

the FG and SM approaches tend to produce a larger attention

rectangle and our approach is much more precise.

Fig. 21 shows our detection results on the images in Fig. 2.

Our results are also publicly available with the whole

labeled database.

4.6 Salient Object Detection from Sequential
Images

4.6.1 Effectiveness of Salient Features

To evaluate the effectiveness of the static and dynamic salient

features for sequential images, we set up a “baseline method”

model in the CRF framework with the following energy:

EðAtjIt�1; ItÞ ¼
X
x

XK
k¼1

�kFkðax; �Þ þ
X
x;x0

Sðax; ax0 ; ItÞ; ð29Þ

where Fkðax; �Þ indicates different salient features and

Sðax; ax0 ; ItÞ is the pairwise feature. We define Fkðax; �Þ from

(29) with different features, and train four CRFs as follows:

. C1: The static salient features from the current
image It are used: Fkðax; �Þ ¼ Fkðax; ItÞ.

. C2: The motion salient features from the motion
field Mt are used: Fkðax; �Þ ¼ Fkðax;MtÞ.

. C3: The static and motion salient features are both
used to detect a salient object, and Fkðax; �Þ is the
combination of Fkðax; ItÞ and Flðax;MtÞ.

. C4: All of the static and dynamic salient features are
used, and Fkðax; �Þ is the combination of Fkðax; ItÞ,
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Fig. 19. Comparison on a small object (object/image ratio 2 ½0; 0:25�)
data set from image set A. 1. A rectangle centered at the image center
and with 0.6 object/image ratio. 2. FG. 3. SM. 4. Our approach.
(a) Precision/recall. (b) BDE.

Fig. 20. Comparison of different algorithms. From left to right: FG, SM,
our approach, and ground truth.

Fig. 21. Our detection result on the images in Fig. 2.

Fig. 22. Evaluation of different salient features for sequential images.
(a) and (b) 1-4 corresponds to C1-C4, respectively, where different
salient features are trained within the CRF framework. (a) Precision/
recall. (b) BDE.



Flðax;MtÞ, and Fmðax; It�1; ItÞ. This is the proposed
approach for salient object detection.

Fig. 22 shows the precision, recall, F-measure, and BDE
of these CRFs on 30;000þ image pairs. The salient objects
in these image pairs are very small compared with the
image database, and that is why the performance of C1 is
not as good as the trained CRF in our image database.
Approach C3, combining salient features on color and
motion, improves 8-9 percent on F-measure compared with
approach C1 with only the salient features on color. C3 also
improves 23 percent on F-measure compared with C2 with
only the salient features on motion. We can see that C1
outperforms C2 on the F-measure. With the appearance
coherent features, the proposed approach C4 improves
9 percent on recall with a little sacrifice on precision and
improves 1 percent on the overall criteria F-measure.

4.6.2 Comparison with Other Approaches

A general CRF model is defined in (29), where different static
and dynamic features can be included to learn a detector. We
compare our approach with the following approaches:

. D1: We use Itti’s salient model to compute the static
saliency map following [47], [24], [27], and the
multiple-scale motion contrast from [24] to compute
the dynamic saliency map. We also test the motion
saliency from [47], where the difference between the
pixel’s motion and the global motion from the whole
image is computed as the motion saliency, and
experiments indicate that it does not outperform the
multiple-scale motion contrast.

. D2: Differently from D1, we use the saliency map from
the temporal surprise in [11] as the dynamic salient
feature. However, the surprise computation using all
features is extremely costly on a large number of
image sequences. A reasonable simplification is to use
only four combined saliency maps to compute the
temporal surprise. We use the publicly available
Bayesian Surprise Matlab toolkit (http://sourceforge.
net/projects/surprise-mltk) for the implementation.

. D3: Other related work includes the tracking
algorithm with a hand initialization in the first
frame, and we report the results of the typical mean-
shift tracking algorithm [48].

Fig. 23 shows the comparison of our approach with D1-3.
Our approach improves 52 percent on F-measure and reduces
54 percent on BDEs compared with D1. We also evaluate the
results with only the motion saliency in (29) and find that the
multiscale motion contrast has a very low recall. This is the
main reason that motion saliency is not well leveraged in D1.

Our approach also improves 59 percent on F-measure and
reduces 64 percent on BDEs compared with D2. The
difference between D1 and D2 is the motion saliency, and
we find that video surprise with the goal of eye movements
cannot help to locate the small salient object well, and further,
the video surprise does not strengthen the static saliency
much because it is computed based on the static saliency. We
find that the collected image sequences are also very
challenging for the mean-shift tracking algorithm, because
of the following traits: large motion of object and camera,
object rotation and appearance change, illumination change,
and so on. Our approach improves 20 percent on F-measure
and reduces 45 percent on BDEs compared with D3. The
results imply that the salient features can help visual object
tracking for those challenging videos.

5 DISCUSSION

In this section, we discuss the connection and clarify the
difference between our approach for salient object detection
and other related work.

5.1 Salient Object versus Visual Saliency

A visual saliency map is computed from multiscale image
features in Itti’s model [13], [12], which is one of the most
representative works on computational modeling of visual
attention. Itti’s model and those similar to it are based on the
biologically plausible computational models of attention,
with a particular emphasis on bottom-up control of atten-
tional deployment. They state as a goal the determination of
fixation and eye movements over an image. We summarize
the difference between salient object detection and visual
saliency computation with Itti’s model in the following.

First, a salient object is essentially one important aspect of
visual attention, and the goal is to locate the salient object in
an image or sequential images to help in displaying images
on a small device or browsing image collection. It is different
from Itti’s model, which has as a goal the determination of
fixation and eye movements over an image. The recent study
[42] also analyzes their connection and indicates that Itti’s
visual saliency model is closely related to interesting object
detection. Second, we propose a different solution to the
problem. We adopt a binary mask to indicate a salient object
using the salient feature maps which are combined with
learned parameters. These feature maps are different from
the visual saliency maps or the conspicuous maps in Itti’s
model that are based on biological theory.

5.2 Salient Object Detection versus Figure-Ground
Segregation

The figure-ground segregation task is similar to salient object
detection as both aim to find the objects, but they are
essentially different. The main difference is that our
approach detects a salient object automatically, without any
prior knowledge about its category, its shape, or size and that
the conventional figure-ground segregation algorithms
require the supposition of the category of objects [19], [20],
[21] or user interactions [22], [23]. On the other hand, the
visual features adopted for the detection differ greatly. For
salient object detection, we propose generic salient features
without discrimination of object categories. For figure-
ground segregation of an object with a given category, the
specific features, for example, for cows, may be defined
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Fig. 23. Comparison with different approaches for sequential
images. 1-3 correspond to D1-3, respectively, 4 is our approach
C4. (a) precion/recall. (b) BDE.



specifically and these features cannot be adopted for other
categories. Due to the above differences, the figure-ground
segregation algorithm is not comparable to our approach.

6 CONCLUSION

In this paper, we have presented a supervised approach for
salient object detection which is formulated as a binary
labeling problem using a set of local, regional, and global
salient object features. A CRF model was learned and
evaluated on a large image database containing 20,000+
well-labeled images by multiple users. We also extend this
supervised approach to detect a salient object sequence
from sequential images, where dynamic salient features are
included to help detect the salient object.

There are several possible remaining issues for further
investigation. We plan to experiment with nonrectangular
shapes for salient objects and a nonlinear combination of
features. In particular, we are extending our single salient
object detection framework to detect any number of salient
objects, including no salient object at all. Fig. 24 shows two
initial results. In Fig. 24a, our current CRF approach can
directly output two disjointed connected components so that
we can easily detect them simultaneously. In Fig. 24b, we
use the inhibition-of-return strategy [13] to detect the salient
objects one-by-one. Finally, Fig. 25 shows two failure cases
which demonstrate one of the challenges in the salient object
detection—hierarchical salient object detection.
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